线程池
线程池源码
public ThreadPoolExecutor(
int corePoolSize, // 核心线程数
int maximumPoolSize, // 最大线程数
long keepAliveTime, // 线程存活时间(在 corePore<*<maxPoolSize 情况下有用)
TimeUnit unit, // 存活时间的时间单位
BlockingQueue<Runnable> workQueue // 阻塞队列(用来保存等待被执行的任务)
ThreadFactory threadFactory, // 线程工厂,主要用来创建线程;
RejectedExecutionHandler handler // 当拒绝处理任务时的策略
){
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}
参数
ThreadPoolExecutor
类可设置的参数主要有:
核心参数
corePoolSize
核心线程数,核心线程会一直存活,即使没有任务需要处理。当线程数小于核心线程数时,即使现有的线程空闲,线程池也会优先创建新线程来处理任务,而不是直接交给现有的线程处理。
核心线程在allowCoreThreadTimeout被设置为true时会超时退出,默认情况下不会退出。
maximumPoolSize
当线程数大于或等于核心线程,且任务队列已满时,线程池会创建新的线程,直到线程数量达到maxPoolSize。如果线程数已等于maxPoolSize,且任务队列已满,则已超出线程池的处理能力,线程池会拒绝处理任务而抛出异常。
keepAliveTime
当线程空闲时间达到keepAliveTime,该线程会退出,直到线程数量等于corePoolSize。如果allowCoreThreadTimeout设置为true,则所有线程均会退出直到线程数量为0。
workQueue
阻塞队列
线程池按以下行为执行任务
- 当线程数小于核心线程数时,创建线程。
- 当线程数大于等于核心线程数,且任务队列未满时,将任务放入任务队列。
- 当线程数大于等于核心线程数,且任务队列已满
- 若线程数小于最大线程数,创建线程
- 若线程数等于最大线程数,抛出异常,拒绝任务
其他参数
-
keepAliveTime
:当线程池中的线程数量大于corePoolSize
的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了keepAliveTime
才会被回收销毁; -
unit
:keepAliveTime
参数的时间单位。 -
threadFactory
:executor 创建新线程的时候会用到。 -
handler 参数(饱和策略):
ThreadPoolExecutor.AbortPolicy
:丢弃任务并抛出RejectedExecutionException
异常。ThreadPoolExecutor.DiscardPolicy
:丢弃任务,但是不抛出异常。ThreadPoolExecutor.DiscardOldestPolicy
:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)ThreadPoolExecutor.CallerRunsPolicy
:由调用线程处理该任务,也就是直接在调用execute
方法的线程中运行(run
)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。
建议
在《阿里巴巴 Java 开发手册》“并发处理”这一章节,明确指出线程资源必须通过线程池提供,不允许在应用中自行显示创建线程。
为什么呢?
使用线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源开销,解决资源不足的问题。如果不使用线程池,有可能会造成系统创建大量同类线程而导致消耗完内存或者“过度切换”的问题。
另外《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 构造函数的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险
Executors 返回线程池对象的弊端如下:
FixedThreadPool
和SingleThreadExecutor
: 允许请求的队列长度为 Integer.MAX_VALUE,可能堆积大量的请求,从而导致OOM
。CachedThreadPool
和ScheduledThreadPool
: 允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致OOM
。